Baris dan Deret

  1. BARISAN ARITMETIKA DAN GEOMETRI

U1, U2, U3, … ,Un adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut

Barisan Ciri utama Rumus suku ke-n Suku tengah Sisipan k bilangan
Aritmetika Beda b = Un – Un – 1 Un = a + (n – 1)b Ut = (a + U2k – 1) ,   k letak suku tengah, banyaknya suku 2k–1 bbaru =
Geometri Rasio r = Un = arn–1 Ut = , dengan t = ½(n + 1)

rbaru =

 

Catatan :

  1. x dan y adalah dua buah bilangan yang akan di sisipkan k buah bilangan
  2. U1 = a = suku pertama suatu barisan
  3. Pada barisan aritmetika berlaku Um – Uk = (m – k)b

 

  1. DERET ARITMETIKA DAN GEOMETRI

U1 +  U2 + U3 + … + Un adalah penjumlahan berurut (deret) suatu barisan dengan ciri khusus sbb

Deret Jumlah n suku pertama
Aritmetika Sn  = n(a + Un)                      ……………jika a dan Un diketahui

= n(2a + (n – 1)b) …………..jika a dan b diketahui

Geometri Sn =  ………………… jika r > 1

= …………………jika r < 1

Catatan:

  1. Antara suku ke-n dan deret terdapat hubungan yaitu :
  • Un = Sn – Sn – 1
  • U1 = a = S1

Eksponen & Logaritma

images

Fungsi Eksponen

Bentuk an disebuat sebagai bentuk eksponensial atau perpangkatan, dengan a disebut basis atau bilangan pokok dan n disebut eksponen atau pangkat. Sifat – sifat yang berlaku dalam bilangan berpangkat rasional diantaranya adalah sebagai berikut :

https://i0.wp.com/rumus-matematika.com/wp-content/uploads/2013/07/eksponen.jpg

Perhatikan contoh soal berikut :

Hitunglah hasil perpangkatan (0,008)⋅²

jawab :

(0,008)⋅² = (1/125)⋅²

= (1/5³)⋅²

= (5⋅³)⋅²

= 5^6 = 15.625

2. Persamaan Eksponen

Persamaan eksponen adalah suatu persamaan yang pangkatnya (eksponen), bilangan pokoknya, atau bilangan pokok dan eksponennya memuat suatu variabel.

Bentuk-bentuk persamaan eksponen yang akan kita bahas yaitu

a. Bentuk persamaan a^f(x)=1

Misal terdapat persamaan a^f(x)=1 dengan a>0 dan a≠1, untuk menentukan himpunan penyelesaian bentuk persamaan tersebut gunakan sifat bahwa :

a^f(x) = 1 ⇔f(x)=0

b. Bentuk persamaan a^f(x) = a^p

Misalkan terdapat persamaan a^f(x) = a^p, dengan a>0 dan a≠1. Himpunan penyelesaian bentuk persamaan eksponen diatas ditentukan dengan cara menyamakan pangkat ruas kiri dengan ruas kanan.

a^f(x)= a^p ⇔ f(x) = p

c. Bentuk persamaan a^f(x) = a^g(x)

Misalkan terdapat persamaan a^f(x) = a^g(x) dengan a>0 dan a≠1. Himpunan penyelesaian persamaan diatas dapat ditentukan dengan cara menyamakan persamaan pangkatnya. Jadi dapat kita katakan sebagai berikut :

a^f(x) = a^g(x) ⇔ f(x) = g(x)

d. Bentuk Persamaan a^f(x) = b^f(x)

Misalkan terdapat persamaan a^f(x) = b^f(x), dengan a≠b ;a,b >0 ; a,b ≠1. Himpunan penyelesaian persamaan eksponen tersebut dapat ditentukan dengan cara menyamakan f(x0 dengan nol. Jadi dapat disimpulkan sebagai berikut :

a^f(x) = b^f(x) ⇔ f(x) = 0

e. Bentuk persamaan a^f(x) = b^g(x)

Misalkan diberikan persamaan a^f(x) = b^g(x) dengan a≤b ; a,b >0 ; a,b ≠1, dan f(x) ≠ g(x). Himpunan penyelesaian untuk bentuk persamaan eksponen tersebut dengan melogaritmakan kedua ruas, yaitu :

log a^f(x) = log b^g(x)

f. Bentuk Persamaan A{a^f(x)}² + B{a^f(x)}+ C = 0

Untuk menentukan penyelesaian persamaan eksponen yang berbentuk persamaan kuadrat dapat dikerjakan dengan cara memfaktorkan, melengkapkan kuadrat sempurna atau rumus abc.

g. Bntuk persamaan f(x)^g(x) =1 ; f(x)≠g(x)

Untuk menyelesaikan persamaan eksponen dengan bentuk tersebut, lakukanlah langkah-langkah berikut :

1). g(x)=0 karena ruas kanan nilainya 1 berarti g(x) harus sama dengan nol.

2). f(x)=1 karena jika f(x)=1 maka bilangan 1 dipangkatkan berapapun nilainya 1.

3). f(x)=-1, dengan syarat g(x) harus genap.

h. Bentuk persamaan f(x)^g(x) = f(x)^h(x)

Untuk nilai g(x) ≠ h(x). Himpunan penyelesaian bentuk eksponen tersebut diperoleh dari empat kemungkinan berikut :

1). g(x)=h(x0 karena bilangan pokok sudah sama maka pangkatnya harus sama.

2). f(x)=1 karena g9x) ≠ h(x) maka bilangan pokok harus bernilai 1 (satu) agar persamaan bernilai benar.

3). f(x)=-1, bewrakibat g(x) dan h(x) harus sama-sama bernilai genap atau sama-sama bernilai ganjil.

4). f(x)=0, dengan g(x) dan h(x) masing-masing bernilai positif dituliskan g(x)>0 atau h(x)>0.

i. Bnetuk persamaan g(x)^f(x) = h(x)^f(x)

persamaan diatas akan bernilai benar jika

a. f(x)=0 untuk g(x)≠0 dan h(x)≠0 ;

b. g(x)=h(x)

3. Fungsi Logaritma

Bentuk eksponen atau perpangkatan dapat kita tulis dalam bentuk logaritma. Secara umum dapat ditulis sebagai berikut :

Jika ab = c dengan a > 0 dan a ≠ 1 maka alog c = b dalam hal ini a disebut basis atau pokok logaritma dan c merupakan bilangan yang dilogaritmakan. Logaritma memuliki sifat-sifat sebagai berikut :

sifat log

3.1 Bentuk umum dari fungsi logaritma yaitu Jika ay = x dengan a ≥0 dan a ≠ 1 maka y =alog x

mempunyai sifat-sifat :

semua x > 0 terdefinisi
jika x mendekati no maka nilai y besar sekali dan positif
untuk x=1 maka y=o
untuk x > 1 maka y negatif sehingga jika nilai x semakin besar maka nilai y semakin kecil.

3.2. Grafik Fungsi y =alog x untuk a >0

mempunyai sifat – sifat sebagai berikut :

untuk semua x > 0 terdefinisi
jika x mendekati no maka y kecil sekali dan negatif
untuk x=1 maka y=0
untuk x > 1 maka y positif sehingga jika x semakin besar maka y semakin besar.

Berikut ini gambar grafiknya :

grafik eksponen